Biodegradable polymer matrix nanocomposites for tissue engineering: A review
نویسندگان
چکیده
Nanocomposites have emerged in the last two decades as an efficient strategy to upgrade the structural and functional properties of synthetic polymers. Aliphatic polyesters as polylactide (PLA), poly(glycolides) (PGA), poly(3-caprolactone) (PCL) have attracted wide attention for their biodegradability and biocompatibility in the human body. A logic consequence has been the introduction of organic and inorganic nanofillers into biodegradable polymers to produce nanocomposites based on hydroxyapatite, metal nanoparticles or carbon nanotructures, in order to prepare new biomaterials with enhanced properties. Consequently, the improvement of interfacial adhesion between the polymer and the nanostructures has become the key technique in the nanocomposite process. In this review, different results on the fabrication of nanocomposites based on biodegradable polymers for specific field of tissue engineering are presented. The combination of bioresorbable polymers and nanostructures open new perspectives in the self-assembly of nanomaterials for biomedical applications with tuneable mechanical, thermal and electrical properties. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration
Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this pa...
متن کاملStudy of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate)/SiO2 Nanocomposites
Poly(ethylene adipte) and poly(ethylene adipate)/silica nanocomposite (PEAd/SiO2) containing 3 wt. % SiO2 were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC). The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinet...
متن کاملThe Relationship between Thermomechanical Properties with Morphology in PCL / PHBV / MWCNT Biodegradable Nanocomposites with Application in Neural Tissue Engineering
The purpose of this study was to find a combination of nanocomposite polymer with biomechanical and physical properties suitable for use in the treatment of nerve damage.In this research PCL and PHBV with a ratio of 25/75, 10/90 And its nanocomposites were prepared using the same MWCNT nanoparticle with different weight percentages of 1 and 3 wt% by solvent method. To evaluate morphological...
متن کاملIn vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites.
Injectable nanocomposites made of biodegradable poly(propylene fumarate) and the crosslinking agent propylene fumarate-diacrylate as well as each of three forms of single-walled carbon nanotubes (SWNTs) were evaluated for their in vitro cytotoxicity. Unreacted components, crosslinked networks, and degradation products of the nanocomposites were investigated for their effects on cell viability u...
متن کاملDesign and characterization of biodegradable polymer-clay nanocomposites prepared by solution mixing technique
This paper discusses about preparation of biodegradable polymer /clay nanocomposites based on organically modified montmorillonite clay; i.e. cloisite 10A and biodegradable polymer chitosan by solution mixing technique and their characterization. The nanocomposites were successfully prepared and their structures were characterized by powder x-ray diffraction (XRD), particle size analyzer (Beckm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010